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Executive Summary: 

Individual quality measures have significant limitations for assessing surgical performance.  

Despite growing interest in composite measures, methods for empirically combining multiple 

domains of surgical quality are not well established. This paper outlines the methods for 

creating a simple composite score based on a combination of surgical mortality and hospital 

volume. The methods used are based on empirical Bayes techniques, where the mortality rate 

is weighted to the extent it is reliable and the remaining weight is placed on hospital volume. 

We validated this composite measure by assessing how well it predicts subsequent 

performance. This perspective is particularly relevant for selective-referral or public reporting 

contexts. Our results demonstrate that a simple composite of mortality and volume is a better 

predictor of subsequent performance than either measure alone for most operations. These 

measures will help patients and payers identify hospitals likely to have superior outcomes. 
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INTRODUCTION: 

 Aiming to foster accountability and encourage quality improvement, payers are 

increasingly collecting and reporting information on hospital quality with surgery (1,2). 

Because reliable, all-payer patient databases are not widely available, these efforts often 

rely on self-reported information from hospitals. For example, the Leapfrog Group, a 

large coalition of private payers, asks hospitals for their caseloads and number of deaths 

with 7 different procedures. This information is used to categorize hospitals for purposes 

of public reporting or selective contracting (3).  

However, it remains unclear whether this information is useful for identifying the 

best hospitals with surgery. There are at least two reasons to question the value of these 

data. First, the individual measures most often used to evaluate surgical performance are 

flawed. Mortality rates are often too “noisy” to reflect hospital quality with surgery (4,5). 

In addition, although very important for some operations, hospital volume is a weak 

proxy for performance with most procedures (6). Second, when multiple measures are 

considered, it is not clear how to best weight them or interpret them when they conflict. 

For example, some hospitals will have high volumes but high mortality; others will have 

low volume but low mortality. It is not clear which group of hospitals is likely to have 

better outcomes.  

In this paper, we describe a simple composite score created using hospital volume 

and observed mortality, as might be self-reported by hospitals. Given how publicly 

reported information on quality is likely to be used by patients and payers, we assessed 

the value of the composite at predicting future hospital performance. Because self-
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reported mortality rates are not risk-adjusted, we also evaluated the extent to which risk-

adjustment is important for predicting hospital outcomes. 

 

METHODS:  

 Data source and study population. We used data from the Medicare Analysis 

Provider and Review (MEDPAR) files, which contains 100% of Medicare 

hospitalizations. MEDPAR files, which contain hospital discharge abstracts for all fee-

for-service acute care hospitalizations of all US Medicare recipients, were used to create 

our main analysis datasets.  The Medicare eligibility file was used to assess patient vital 

status at 30 days. The study protocol was approved by the Institutional Review Board at 

the University of Michigan.  

Using appropriate procedure codes from the International Classification of 

Diseases, version 9 (ICD-9), we identified all patients aged 65 to 99 undergoing the 

following six operations: coronary artery bypass grafting, aortic valve replacement, 

abdominal aortic aneurysm repair; percutaneous coronary interventions, and resection of 

pancreatic and esophageal cancer. We chose these operations given their relevance to 

ongoing value-based purchasing initiatives, including the Leapfrog Group’s evidence-

based hospitals referral initiative. In keeping with Leapfrog data specifications, we 

excluded small patient subgroups with much higher baseline risks, including those with 

procedure codes indicating that other operations were simultaneously performed (e.g., 

coronary artery bypass and valve surgery) or were performed for emergent indications 

(e.g., ruptured aortic aneurysms) (3).  
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Development of the composite measure. We used an empirical Bayes approach 

to combine mortality rates with information on hospital volume at each hospital. In 

traditional empirical Bayes methods, a point estimate (e.g., mortality rate observed at a 

hospital) is adjusted for reliability by shrinking it towards the overall mean (e.g., overall 

mortality rate in the population) (7,8). We modified this traditional approach by shrinking 

the observed mortality rate back toward the mortality rate expected given the volume at 

that hospital—we refer to this as the “volume-predicted mortality” (See the 

TECHNICAL APPENDIX for the mathematical details of this method). With this 

approach, the observed mortality rate is weighted according to how reliably it is 

estimated, with the remaining weight placed on the information regarding hospital 

volume. Because this method includes observed data to the extent that it is useful, and 

only relies on the proxy measure to the extent necessary, it ensures an optimal 

combination of these two quality domains. 

The two inputs to the composite measure are mortality rates and procedure 

volume for each of the six included operations. Procedure-specific mortality rates were 

calculated for all hospitals over a 2-year period (2000-01) and this was used as the first 

input. Hospital volume was calculated as the number of Medicare cases performed during 

the same time period. For each operation, the relationship between hospital volume and 

risk-adjusted mortality was modeled using linear regression. (Details of the risk-

adjustment strategy will be discussed below.) After testing the fit of several 

transformations, hospital volume was modeled as the natural log of the continuous 

volume variable, which is the same approach used in our previous work (9). Using this 
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regression model, we estimated the volume-predicted mortality, the second input to the 

composite measure.  

We then used the empirical Bayes approach to create an optimal combination of 

these two inputs. This composite measure theoretically provides the best estimate of a 

hospitals true mortality rate, taking into account the both available inputs (7,8). The 

combined measure was calculated as follows: composite mortality prediction = 

(weight)*(observed mortality) + (1-weight)*(volume-predicted mortality). The weight 

placed on the point estimate of mortality is the reliability, or ratio of signal to signal plus 

noise, calculated as follows: weight = variation among hospitals/(variation among 

hospitals + variation within hospitals). The variation among hospitals was calculated as 

the variance in observed mortality rates for the hospitals included in the sample. The 

variation within hospitals was calculated as the standard error of the mortality rate at each 

hospital. With this method, more weight is placed on the observed mortality rate when a 

hospital has a high number of cases because it is estimated with more reliability; less 

weight is placed on the observed mortality rate when a hospital performs a low number of 

cases because of its lower reliability. 

Sensitivity analysis. We performed a sensitivity analysis to determine whether 

risk-adjustment of the mortality input was important in improving the predictive ability of 

the composite measure. Risk-adjustment was performed using logistic regression to 

estimate expected mortality rates for each hospital based on patient age, gender, race, 

urgency of operation, median income, and coexisting diseases. Coexisting diseases were 

determined from secondary diagnostic codes using the methods of Elixhauser (10). The 

observed mortality rate at each hospital was then divided by the expected mortality rate to 
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yield the ratio of observed/expected deaths (O/E ratio). The O/E ratio was multiplied by 

the average mortality rate for each operation to yield a risk-adjusted mortality rate. To 

determine the value of risk-adjustment in the context of selective referral, we compared 

the ability of risk-adjusted and unadjusted composite measures to predict subsequent 

performance. 

Validating the composite measure. We determined the value of our composite 

measure by establishing whether it explained hospital-level variation in risk-adjusted 

mortality rates and by assessing to what degree it was able to predict future hospital 

performance. We first estimated the proportion of variation in hospital-level mortality 

(2000-01) explained by the composite measure using random effects logistic regression 

models. For these analyses, we estimated the proportional change in the hospital-level 

variance in mortality rates, which was determined from the standard deviation of the 

random effect, after adding each measure to the model (8,11). We next compared the 

ability of the composite measure to the individual measures, mortality rates and hospital 

volume. We should note that these analyses focus on explaining systematic, or non-

random, variation, since measurement error (random error) is accounted for and 

subtracted from the total variation in all analyses (8,12).  

We next determined the extent to which the composite measure predicts future 

risk-adjusted mortality. For this analysis, hospitals were ranked based on each measure 

from the earlier time period (data from years 2000-01) and divided into four equal size 

groups (quartiles at the patient level). The subsequent risk-adjusted mortality rates for 

each quartile of performance were then calculated (data from years 2002-03). We present 

the subsequent mortality rates across quartiles of the composite measure to graphically 
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demonstrate its usefulness in discriminating among hospitals for the entire spectrum of 

performance. To compare the predictive ability of the composite measures and individual 

measures, we also present the subsequent mortality rates in the “worst” compared to the 

“best” quartile. All statistical analyses were conducted using STATA 10.0 (College 

Station, Texas).  



RESULTS:  

 Hospital caseloads and the weights applied to each input to the composite 

measure varied for each procedure (Table 1). For coronary artery bypass and 

percutaneous coronary interventions, the two procedures with the highest hospital 

caseloads, more weight was placed on the mortality input (46% and 48%, respectively). 

At the other end of the spectrum, for esophageal resection, the operation with by far the 

lowest caseload, much less weight was placed on the mortality input (14%).  

 Weights placed on the mortality input also varied across hospitals for the same 

procedure. For hospitals with higher caseloads of a particular operation, more weight was 

placed on the mortality input compared to hospitals with lower caseloads. For example, 

consider a hospital that performs 40 abdominal aortic aneurysm repairs over a two year 

period, with 4 deaths. The observed mortality rate would be 10% and the weight placed 

on the mortality component would be 30%. Since this is a high volume hospital, its 

volume-predicted mortality is estimated at 2.5%. The composite mortality measure is 

then calculated as follows: (10%)(0.30) + (2.5%)(0.70) = 4.75%. In contrast, consider a 

hospital performing only 10 abdominal aortic aneurysm repairs without any deaths. This 

hospital has a mortality rate of 0%, a weight applied to the mortality input of 15%, and a 

volume-predicted mortality of 5.0%; and the composite mortality prediction is as follows: 

(0%)(0.15) + (5.0%)(0.85) = 4.25%.  

The composite measure explained a large proportion of non-random, hospital-

level variation in risk-adjusted mortality rates (Table 2). The amount of variation 

explained by the composite measure varied from 41% for abdominal aortic aneurysm 

repair to 66% for percutaneous coronary interventions. While the composite measure 
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explained more variation than either measure alone for all 6 operations, the relative 

importance of the individual measures varied across procedures (Table 2).  For the more 

common operations, such as coronary artery bypass, mortality rates explained a large 

proportion of the variation (46%), and hospital volume explained a small proportion 

(9%). For less common operations, such as pancreatic resection, hospital volume 

explained a much larger proportion of the variation (57%) than mortality rates (23%).  

The composite measure predicted large differences in future risk-adjusted 

mortality between the “best” and “worst” hospital quartiles (Table 3). The best prediction 

was achieved with pancreatic resection, with greater than 4-fold differences between the 

“worst” and “best” quartiles (Odds Ratio [OR], 4.45; 95% CI, 3.12 to 6.67). The 

composite measure was least predictive for coronary artery bypass, but future mortality 

rates were still 1.7 times greater in “worst” compared to the “best” quartile (OR, 1.70; 

95% CI, 1.57-1.84). When compared to the individual measures by themselves, the 

composite was better at predicting differences between the “best” and “worst” quartiles 

for all 6 operations (Table 3). In addition to better discriminating between the extremes 

of performance, the composite measure was also better at predicting mortality in the 

intermediate strata of performance (Figure). In sensitivity analysis, composite measures 

based on an unadjusted mortality input and a risk-adjusted mortality input were equally 

good a predicting future performance (Figure).  

  

  

 11



DISCUSSION: 

Although information on hospital quality is increasingly collected and reported, 

the usefulness of much of this data is uncertain. In the present paper, we assessed the 

value of a composite measure—based only on the hospital case count and the number of 

deaths—for predicting future hospital performance. We found that this simple composite 

measure based on widely available data explained a great deal of hospital-level variation 

in mortality and predicted nearly 2-fold differences in future hospital performance 

between the best and worst hospital quartiles. In this regard, this simple composite 

measure performed better than individual measures for all operations.  

Composite measures of performance are gaining increasing popularity in surgery. 

Most existing pay-for-performance programs use this approach to summarize hospital 

performance. For example, the Premier/Center for Medicare and Medicaid Services 

Hospital Quality Incentive Demonstration uses a composite of process and outcome to 

measure quality for coronary artery bypass surgery (13). The Society of Thoracic 

Surgeons’ Task Force on Quality Measurement advocates a composite score based on a 

set of outcome and process measures endorsed by the National Quality Forum (14,15).  

Despite the increasing interest in composite measures, there are major problems 

with existing approaches for creating them. Perhaps the biggest limitation relates to the 

weighting of the input measures. Existing approaches rely on overly simplistic 

approaches. Among these, assigning equal weight to all measures (i.e., the all or none 

approach) and relying on expert opinion are the most common. There are several reasons 

why these approaches may not make optimal use of available information. First, some 

measures are more reliable or more important than others. Second, as the present study 
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shows, the relative importance of individual measures varies by procedure. In addition, 

the usefulness of these existing approaches to predict subsequent performance, arguably 

the most important criteria of validity for public reporting or selective referral, has not 

been established. In contrast, the methods set forth in this paper combine individual 

measures using an empiric weighting process. The validity of this approach is proved by 

the ability of the composite measure to reliably predict future performance. Our simple 

composite measure also has the advantage of being relatively transparent and applied 

using readily available data, including information that is self-reported or obtained from 

administrative datasets.  

Our findings also suggest that the weight placed on individual measures used in a 

composite score should be tailored to the procedure. For very common operations, such 

as coronary artery bypass surgery, much more weight should be placed on the mortality 

rate, largely because it is measured with more precision. At the other end of the spectrum, 

less common operations like pancreatic and esophageal cancer resection are not 

performed often enough to measure mortality precisely, and very little weight should be 

placed on this measure. The weights applied to individual measures should also vary 

across hospitals performing the same procedure. If a hospital performs a high number of 

cases for a specific operation, their mortality will be measured more precisely than a 

hospital that performs fewer cases of that operation.  

Although perhaps important for face validity, we found that risk-adjustment was 

not important in categorizing hospitals into performance groups. Composite measures 

based on unadjusted and risk-adjusted mortality rates were equally good at predicting 

future risk-adjusted mortality rates. Among potential reasons for this finding, it is 
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possible that illness severity for patients undergoing the same surgical procedure may not 

vary across systematically hospitals, especially when compared to patients in other 

clinical settings in which quality is measured (e.g., trauma or acute myocardial 

infarction). However, our conclusions about the importance of risk-adjustment must be 

tempered by our reliance on Medicare claims data for risk-adjustment, the limitations of 

which are well-described (16). Because of this limitation, we cannot exclude the 

possibility that composite measures created using mortality rates with more detailed risk-

adjustment could result in even better predictive ability.   

Relying on Medicare data also cuts our effective sample size by one half at each 

hospital, another limitation of using this data source. By limiting the sample sizes in this 

way, we have likely underestimated the reliability of the mortality rate input used in our 

composite measure. If all patients at a hospital were included, there would be a larger 

sample size and the mortality input would be more reliable. Composite measures based 

on more reliable mortality inputs would likely be even better at predicting future 

performance.  

Although our study demonstrates the value of composite measures for 

categorizing hospitals, these measures may be an imperfect proxy for individual hospital 

performance.  As with many other quality indicators, this limits the usefulness of this 

measure from the perspective of providers engaged in local quality improvement efforts. 

However, it is no worse in this regard, and may be better, than what we are currently 

using (e.g., hospital volume and mortality rates alone). The primary application of these 

measures would be public reporting and payer-led selective contracting. Patients are 

interested in a measure that will help them choose a hospital that will increase their 
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chances of surviving an operation. Payers are interested in selectively contracting with 

providers likely to have the best outcomes. The composite approach to measurement 

outlined in this paper is ideally suited for these purposes.  

In summary, we have developed a simple composite measure that optimizes the 

use of readily available information and is good at predicting future hospital 

performance. Refinements of this approach will include incorporating more detailed 

inputs, such as nonfatal outcomes, clinical process measures, and outcomes with other, 

related procedures. Adding these other measures would likely improve the predictive 

ability of the composite measures. In the meantime, our simple composite measure will 

be better than existing alternatives at helping patients and payers to identify the safest 

hospitals for surgery.  

  

 

 

 

 

 

 

 

 

 

 

 

 15



REFERENCES:   

1. Galvin RS. The business case for quality.Health Aff (Millwood). 2001;20:57-58.  

2. Rosenthal MB, Dudley RA. Pay-for-performance: will the latest payment trend 

improve care? JAMA 2007;297:740-744.  

3. The Leapfrog Group. Evidence-Based Hospital Referral Fact Sheet. 

http://www.leapfroggroup.org/, accessed November 6th, 2007. 

4. Dimick JB, Welch HG, Birkmeyer JD. Surgical mortality as an indicator of 

hospital quality: The problem with small sample size. JAMA 2004;292:847-851. 

5. Dimick JB, Welch HG. The zero mortality paradox in surgery. J Am Coll Surg (In 

press) 

6. Halm EA, Lee C, Chassin MR. Is volume related to outcome in health care? A 

systematic review and methodologic critique of the literature. Ann Intern Med 

2002;137:511-520  

7. Morris CN. Parametric Empirical Bayes Inference: Theory and Applications. J 

Am Stat Assoc 1988;78:47-55. 

8. McClellan MB, Staiger DO. Comparing the Quality of Health Care Providers. 

Alan Garber (ed.) Frontiers in Health Policy Research. Volume 3. 2000 The MIT 

Press: Cambridge MA, pp. 113-136. 

9. Birkmeyer JD, Stukel TA, Siewers AE, et al. Surgeon volume and operative 

mortality in the United States. N Engl J Med. 2003;349:2117-2127. 

10. Southern DA, Quan H, Ghali WA. Comparison of the Elixhauser and 

Charlson/Deyo methods of comorbidity measurement in administrative data. Med 

Care 2004;42:355-360.   

 16



11. Birkmeyer JD, Dimick JB, Staiger DO. Operative mortality and procedure 

volume as predictors of subsequent hospital performance. Ann Surg 

2006;243:411-417. 

12. Zaslavsky AM, Cleary PD. Dimensions of plan performance for sick and healthy 

members on the Consumer Assessments of Health Plans Study 2.0 survey. Med 

Care 2002;40:951-964.   

13. http://www.cms.hhs.gov/HospitalQualityInits/35_HospitalPremier.asp, accessed 

November 6th, 2007.  

14. Shahian DM, Edwards FH, Ferraris VA, et al; Society of Thoracic Surgeons 

Quality Measurement Task Force. Quality measurement in adult cardiac surgery: 

part 1--Conceptual framework and measure selection. Ann Thorac Surg 

2007;83(4 Suppl):S3-12. 

15. O'Brien SM, Shahian DM, DeLong ER, et al.Quality measurement in adult 

cardiac surgery: part 2--Statistical considerations in composite measure scoring 

and provider rating.Ann Thorac Surg. 2007;83(4 Suppl):S13-26.  

16. Iezzoni LI. Assessing quality using administrative data. Ann Intern Med 

1997;127:666-674. 

 

 

 

 

 17

http://www.cms.hhs.gov/HospitalQualityInits/35_HospitalPremier.asp


Table 1.  Hospital caseload and the weight applied to each of the two inputs in the 
composite measure. The weight applied to the mortality rate is the reliability and the weight 
applied to hospital volume is 1-reliability. 

 

  
Hospital caseloads

mean (SD) 

 
Weight applied to 

observed mortality,
mean (SD) 

 
Weight applied to 
hospital volume, 

mean (SD) 

Coronary artery 
bypass grafting 321 (319) .46 (.21) .54 (.21) 

Aortic valve 
replacement 59 (72) .26 (.17) .73 (.17) 

Percutaneous 
coronary 
interventions 

442 (499) .48 (.27) 
.52 (.27) 

Elective abdominal 
aortic aneurysm 
repair 

31 (46) .21 (.18) 
.79 (.18) 

Pancreatic cancer 
resection 4 (10) .23 (.17) .77 (.17) 

Esophageal cancer 
resection 4 (8) .1 4(.13) .86 (.13) 
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Table 2.  Relative ability of each measure to explain hospital-level differences in risk-
adjusted mortality rates (2000-01). 

 

 Proportion of hospital-level variation in mortality rates 
explained by each performance measure (%) 

 Hospital       
volume 

Observed 
mortality 

Simple composite 
measure 

Coronary artery 
bypass grafting 

9 46 61 

Aortic valve 
replacement 

18 26 47 

Percutaneous 
coronary 
interventions 

12 48 66 

Elective 
abdominal aortic 
aneurysm repair 

28 21 41 

Pancreatic cancer 
resection 

57 23 59 

Esophageal 
cancer resection 

33 14 44 
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Table 3.  Relative ability of historical measures (2000-01) to predict subsequent risk-
adjusted mortality (2002-2003). 

 

 Adjusted odds ratio for risk-adjusted mortality (2002-03),    
best vs. worst quartile (95% CI) 

 Hospital        
volume alone  

(2000-01) 

Observed  
mortality alone 

(2000-01) 

Simple composite 
measure          
(2000-01) 

Coronary artery 
bypass grafting 

1.14 (1.03-1.26) 1.56 (1.47-1.70) 1.70 (1.57-1.84) 

Aortic valve 
replacement 

1.19 (0.99-1.40) 1.73 (1.41-2.07) 1.79 (1.33-1.85) 

Percutaneous 
coronary 
interventions 

1.42 (1.29-1.50) 1.70 (1.58-1.81) 1.82 (1.69-1.92) 

Abdominal aortic 
aneurysm repair 

1.77 (1.52-2.06) 1.35 (1.19-1.53) 2.04 (1.78-2.35) 

Pancreatic cancer 
resection 

4.0 (2.53-6.34) 1.56 (1.2-2.04) 4.45 (3.12-6.67) 

Esophageal cancer 
resection 

2.06 (1.46-2.91) 1.14 (0.91-1.43) 2.99 (2.45-3.75) 

 



Figure. Future risk-adjusted mortality rates (2002-02) for quartiles of hospital rankings 
based on historical (2000-01) hospital volume, risk-adjusted mortality rates, and 
composite measures. Future risk-adjusted mortality is shown for the composite measure 
created using both risk-adjusted and unadjusted mortality rates.  
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Figure. (continued) 
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TECHNICAL APPENDIX: 

Herein we describe the methods we used to combine two quality measures for each 
hospital—the mortality rate and hospital volume. We constructed the composite measure 
using unadjusted mortality rates and then performed a sensitivity analysis by creating a 
composite measure with risk-adjusted mortality rates. Because it is methodologically 
more complex, the method below details the creation of the second composite based on a 
risk-adjusted mortality rate. To create the composite based on the unadjusted mortality 
rate, we simply used the observed mortality rate rather than the ratio of observed to 
expected mortality. 

Details of the estimation process. We construct risk-adjusted mortality rates for each 
hospital and each procedure using standard methods to compare outcomes across 
providers. For patients receiving a given procedure, let yij be a dichotomous indicator that 
is equal to 1 if patient j admitted to hospital i experienced the outcome (mortality). The 
risk-adjusted outcome (Yi) for hospital i is the ratio of the observed (Oi) outcome rate to 
the expected (Ei) outcome rate, so that:  

(1)   Yi = Oi/Ei ,   ∑=
j ij

i
i y

n
O 1   and  ∑=

j ij
i

i p
n

E ˆ1  

where ni is the number of patients receiving the procedure at hospital i, and 
=pr(yij=1|Xij) is the predicted probability that the outcome occurred for each patient 

conditional on patient characteristics X. Estimates of the sampling variance for these 
measures are derived using standard methods. We derive the predicted probability that 
the outcome occurs for each patient ( ) from a logistic regression model estimated on 
all patients. The dependent variable in the logistic model is operative mortality (yij) and 
the independent variables (Xij) are the patient covariates available in the dataset.  

ijp̂

ijp̂

The subsequent hospital-level analysis is based on a hierarchical model, in which data at 
the first (patient) level provides noisy estimates of structural parameters at the second 
(hospital) level. At the first level, the distribution of the mortality estimate conditional on 
the structural parameter is: 

(1)  E(Yi | µi) =  µi, and Var(Yi | µi) = Vi, 

where Yi is the risk-adjusted mortality rate for hospital i, µi is the corresponding 
underlying structural quality parameter that represents the average mortality rate that a 
typical patient could expect at this hospital, and Vi is the sampling variance for the 
estimates in Yi. Note that the hierarchical nature of the data allow us to estimate Vi in a 
straightforward manner for each hospital, since this is simply the sampling variance of an 
estimate derived from a sample of patients at hospital i.  

At the second level, the distribution of the structural quality parameter conditional on 
observed hospital volume is: 

(2) E(µi) =  β0 + β1ln(Volumei)  and Var(µi) = σ2, 

where ln(Volumei) is the log of surgical volume at hospital i, β1 is the coefficient 
capturing the effect of surgical volume on patient mortality (expected to be negative), and 
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σ2 is the variance of the structural quality parameter summarizing the remaining variation 
in mortality across hospitals after accounting for differences in surgical volume. 
Preliminary analysis suggested that the log specification adequately summarized the 
relationship between patient mortality and volume across all of the surgical procedures. 

Calculation of hospital-specific measures. Estimation in our hospital-level analysis 
proceeds in two stages. First, we construct estimates of the higher-level parameters in 
equation 2 (β0,β1,σ2). Second, we combine information on hospital mortality and volume 
to construct estimates of the underlying structural quality parameters (µi) for each 
hospital. These estimates are derived from the data (Yi, Volumei, Vi) observed for a 
sample of N hospitals, where in our application N is large. 

The coefficients ( ) determining the relationship between mortality and hospital 
volume are estimated using a least squares regression of Y on ln(Volume). To estimate 
the variance of the structural quality parameters (σ2), we calculate the variance of the 
risk-adjusted mortality rates (Yi), and adjust for sampling variability by subtracting the 
mean sampling-error variance (Vi). The equation is: 

1
ˆ,ˆ ββo

(3)  ( )[ ]{ } ( ) ( )ii

N

i
iiiN VMeanYVarVVolumeY −=−−−= ∑

=1

2

10
12 lnˆˆˆ ββσ  

To estimate the underlying structural quality parameter (µi) for each hospital, we again 
use the empirical Bayes approach.  The empirical Bayes estimate is a weighted average 
of the noisy data (Yi) and the regression predictions ( ( )iVolumelnˆˆ

10 ββ +
2σ̂

), where the 
weights depend on both the signal and noise variance ( and Vi).  The equation is: 

(4)  , ( ) )1)(lnˆˆ(ˆ 10 iiiii WVolumeWY −++= ββμ

where the weight (Wi) is estimated by 

(5)  
i

i V
W

+
= 2

2

ˆ
ˆ

σ
σ . 

The weight is simply the ratio of signal variance to total variance (the “reliability”) in the 
mortality rate for hospital i. Equation (4) is a standard empirical Bayes (or shrinkage) 
estimator that places more weight on a hospital’s own mortality rate (Yi) when the signal 
ratio is high, but shrinks back toward a (conditional) mean when the signal ratio is low.  
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